
Superbly Legible Fonts:
An Improved Bitmap Typewriter

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #53
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Back in GuruGram #37 of BMFONTS.PDF and over in our Precision Bitmap Fonts
Repository, we saw that the secrets to ultra small typography of limited resolution
were to carefully lock the fontshapes to the pixels being displayed; to use a post
process anti-aliasing to make each pixel represent a true gray-shaded average of
its letter content; to provide a full transparency blended style character overlay;
and to work at 1:1 final project size.

We further saw that such precision small bitmaps were exceptionally useful for
photo retouching. Particularly on such eBay items as electronic test equipment
panels. Besides being of interest for display research, working on eBook readers,
or doing ultra small signage as might be needed on a model railroad.

I’ve recently completed the beta of a new AUTOBM1.PSL bitmap typewriter that
nearly completely automates the once tedious process of creating suitable very
small bitmapped fonts. Because font characters are now created on demand as
needed, any font can be used and there is no longer any need for extensive
precompiled bitmap libraries.

A quick demo can be found here. Some real world projects appear here, here,
and here, and especially here. Be sure to reclick for full size.

How it works
A precision font family size can be specified by the height and width of its pixels
for an upper case letter "A". While our technique works with any PostScript font,
the choice of MyriadPro-Bold seems to work extremely well. Besides its being
included in Adobe’s Acrobat 7 package.

The object of our code is to create a bitmap of the chosen lettering in the chosen
sizes properly blended over a chosen background. This "scratch" bitmap can then
be cut and pasted into your main bitmap image being post processed.

A scratch bitmap size of 400 x 400 is presently in use. It is split into four
horizontal stripes to let you work up to four backgrounds at any given time.

— 53.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/bmfonts.pdf
http://www.tinaja.com/bmfont01.asp
http://www.tinaja.com/bmfont01.asp
http://stores.ebay.com/synergeticsabeja
http://www.tinaja.com/psutils/autobmf1.psl
http://www.tinaja.com/psutils/bmdemo1.bmp
http://www.tinaja.com/psutils/bmdemo1.bmp
http://www.tinaja.com/images/bargs/hp331002.jpg
http://www.tinaja.com/images/bargs/sptimer1.jpg
http://www.tinaja.com/images/bargs/wave1001.jpg
http://www.tinaja.com/images/bargs/tek576.jpg
http://www.tinaja.com/post01.asp
http://store.adobe.com/type/browser/P/P_1706.html
http://www.adobe.com/products/acrobat/main.html
http://www.tinaja.com/glib/expbmp.pdf

AUTOBM1.PSL is written in raw PostScript. While this was developed by using my
Gonzo Utilities, Gonzo is not absolutely needed during runtime as several internal
procs have been included. To use your bitmap typewriter, you bring your code up
in Wordpad or any other editor, make desired changes, and then send over it to
Acrobat Distiller. Distiller in turn uses PostScript-as-Language to write a new
scratch bitmap to disk.

The bitmap typewriter has three independent internal array-of-arrays group of
strings representing individual pixels. One each for red, blue, and green. Only
after all characters are properly entered do these string groups get converted to a
conventional .BMP combined RGB 8-bit bitmap and are written to disk for you.

One or more font families will get held in a separate array-of-arrays group of data
values. With the exception of our initial "A" character and a space, characters are
added only when and as needed. Reuse of any character during imaging is thus
much faster.

After analysis, a typical letter "A" might look like…

 [[1.0000 0.8888 0.0000 0.0000 0.9166 1.0000]
 [1.0000 0.6111 0.1111 0.0000 0.6666 1.0000]
 [1.0000 0.3888 0.3055 0.1666 0.3888 1.0000]
 [1.0000 0.1111 0.5277 0.4166 0.1111 1.0000]
 [0.8888 0.0000 0.4722 0.4166 0.0000 0.8888]
 [0.6111 0.0000 0.0000 0.0000 0.0000 0.6111]
 [0.3888 0.1111 1.0000 1.0000 0.0555 0.3888]
 [0.1111 0.3611 1.0000 1.0000 0.2500 0.1111]]

Each data value is in the same relative position as its generated pixels. Each data
value represents an average of 36 or more samples of a high resolution font. The
data value rules are…

 A 0.0000 data value is fully OPAQUE.

 A 1.0000 data value is fully TRANSPARENT.

This is similar to a 0 setgray being maximum black ink. You can see how the
center top and lower corners of the above array clearly show an uppercase "A".

When entering the character onto the bitmap, the data value decides how much
the "new" character pixel will overwrite its "old" background. Ferinstance, if the
old blue background pixel is color 64 and the new blue character pixel is color
128 and the data value is 0.2500, the new blue value will be 112. Because the
new color is one quarter transparent and three-quarters opaque.

— 53.2 —

http://www.tinaja.com/psutils/autobmf1.psl
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/psutils/distlang.html

We’ll note that the MyriadPro-Bold "A" is not quite symmetric, so some values do
not exactly mirror each other. The right foot is apparently slightly wider.

Analyzing the Font Characters

The tricky part is starting with a large high resolution font character and stuffing it
down into an exact number of properly offset horizontal and vertical pixels. From
which we can derive the needed opacity data values for each pixel.

We always start with an upper case "A". And use it to define our font size. Rather
than messing with font metric tables, we will redo everything the hard way. After
a large 100 point imaging of a character, a vertical sample line is first started to
the left and slowly moved right. Points are sampled using PostScript’s little
known and incredibly powerful infill operator. On the first hit of an opaque
sample, the character’s left boundary clb can be determined.

A leftgoing sweep is used to find the crb right boundary, while vertical sweeps are
used for ctb and cbb. The "A" values are then saved as gcwide, gchigh, and gctb
to be used as normalized values that will determine how many vertical and
horizontal pixels will be needed for the other characters.

The upper case "A" will be shown in its called-for horizontal and vertical pixel size.
By using the normalized "A" values, the other characters are auto adjusted to the
needed pixel count widths, heights, and vertical offsetting. Thus, a "W" will be
wider than an "f", and the top pixels of a lower case "c" will start below its upper
case equivalent.

Descenders are handled automatically, stopping when you run out of array.

Two rows of invisible [0.0000 0.0000 0.0000 … 0.0000] padding are added to
the top of the upper case "A" and many other characters. This allows for the lower
case "h", etc… whose ascender may be slightly higher than a capital letter.

As is apparently the case with MyriadPro-Bold.

Your scratch bitmap vertical positioning will thus normally be two pixels above
the top of most characters.

A convention…

 All characters build from the TOP down, starting
 TWO PIXELS ABOVE the top of an upper case "A".

Let’s look at an example of how the post anti-aliased and averaged data values
are gotten…

— 53.3 —

http://store.adobe.com/type/browser/P/P_1706.html
http://www.tinaja.com/post01.asp
http://store.adobe.com/type/browser/P/P_1706.html

A
Grossly oversized pixels are carefully mapped to exactly fit a large high resolution
plot of the character to be evaluated. Each pixel is spatially sampled 36 or more
times as shown in blue. An average is created by using the infill operator to
determine opaque or clear. In this example, we seem to have 14 white hits and
22 black ones, for a transparency of 14/36 = 0.3811. Which exactly matches the
data value in our previous array.

This also is the key secret to the extreme legibility. Other characters are similarly
mapped by first relating them to the "A" character defaults.

Getting Started

You normally begin a bitmap typewriter session by loading AUTOBM1.PSL into
Wordpad or a similar editor. Most of your changes will normally be at the very
end of the document. Your first order of business is to alter targetfilename and
targetfilenameprefix so your bitmap will end up where you expect it to.

Current color values may be defined when needed by a /curcolor [83 89 74]
store, or predefined to a name such as /teklight or /tekdark. The integer values
range from 0 to 240 and may be read directly from the color palette in Paint or
similar programs. 0 is black, 240 is maximum luminance.

Your background color(s) are put down next by using setbackA on up through
setbackD. With setbackA taking care of the bottom quarter of your screen.

— 53.4 —

http://www.tinaja.com/psutils/autobmf1.psl

A foreground color is then chosen as is the desired current font size. Such as with
a tekdark followed up by a 6 8 setbmsize. The first digit is the bitmap width.

You are now ready to type away. Enter a 3 280 (Your String of Characters)
setgraystring to continue. The first integer is the horizontal start position, while
the second is two pixels above the top pixel of your upper case characters. Keep
repeating string entry till all needed sizes, colors, and values are complete.

To complete your session, save AUTOBM1.PSL under a new filename and send it
to Acrobat Distiller. Your new scratch bitmap should be automatically generated
and appear where you expected it to. Note that there is no actual .PDF output;
our main goal here is a .BMP scratch file. A "no file produced" error can be
normal and expected.

Bells and Whistles

The bitmap typewriter automatically moves you down to the next line if you run
out of character room. Breaks are on full characters, but not on whole words.
Carriage returns work as expected. Their size is set by the yinc variable.

If you enter a 0 0 (new character string) setgraystring instead of using position
values, you will go to a default upper left corner (of 3 390) on your first string
and will continue where you left off on successive strings.

The global intercharacter spacing between characters is set by globalkern and
typically will be one pixel for smaller fonts or two for larger. Note that the space
character will be the sum of one space character width and twice the value of
your globalkern. Thus, spaces may appear wider than expected.

Two characters are optionally reserved by kern-char and kern+char for individual
pair kerning. A redefined "‘" backs you up one pixel column to the left, while a "~"
moves you forward one to the right.

The code includes an optional shrinkfactor that lets you clip the characters
somewhat before analysis. This is possibly useful to darken and improve smaller
font sizes but looks awful on the larger ones. Try using a shrinkfactor of 0.04
below 7 pixels of height. But leave it at zero otherwise.

There are some diagnostics hidden in the code that can be activated by
uncommenting. Others are easily added. These give you views of the actual
characters being sampled, outputs of the generated arrays, and various timing
options. Error trapping is modest at present.

Each new generated character is currently reported to the logfile, giving you an
estimate of progress. A typical hundred character bitmap annotation should take
around nine seconds or less. These routines can be further sped up significantly
by reducing boundary precision and averaging samples, along with some new
code optimization.

— 53.5 —

http://www.tinaja.com/psutils/autobmf1.psl
http://www.tinaja.com/psutils/distlang.html

For More Help

Lots of additional uses and examples of true antialiasing are in our Fonts and
Images and Precision Bitmapped Fonts library pages. More on PostScript and
Acrobat in their separate resource areas. Free Gonzo Utilities and many use
examples are found here.

Additional consulting services are available per our Infopack services and on a
contract or an hourly basis. Additional GuruGrams are found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 53.6 —

http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/bmfont01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

